Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 10: 1334832, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260205

RESUMO

Climate change, competent vectors, and reservoir animals are the main factors for developing vector-borne zoonotic diseases. These diseases encompass a significant and widespread category of pathogens (e.g., viruses, bacteria, protozoa, and helminths) transmitted by blood-feeding arthropods, including ticks, fleas, lice, triatomines, mosquitoes, sandflies, and blackflies. In Chile, several studies have explored the role of dogs as reservoirs of vector-borne pathogens; however, there is a lack of research investigating the presence of pathogens in arthropods. Specifically, within the order Diptera, limited knowledge exists regarding their roles as carriers of pathogens. This study aimed to examine the presence of zoonotic filarial nematodes in mosquitoes and dogs within a previously unstudied semi-rural area of Central Chile. Two hundred samples of dog blood and seven hundred and twenty-four mosquitoes were collected during 2021-2022 and studied for filarial nematodes by PCR. The prevalence of microfilaremic dogs detected by Knott's test was 7.5%, with Acanthocheilonema reconditum being the only species identified. Aedes (Ochlerotatus) albifasciatus was the most abundant mosquito species collected, and 15 out of 65 pools were positive for filarial nematodes. Among these pools, 13 tested positive for Acanthocheilonema reconditum, and two tested positive for Setaria equina through PCR. Additionally, five Culex pipiens specimens were positive for Acanthocheilonema reconditum. Despite the absence of zoonotic filarial species, these findings underscore the significance of monitoring pathogens in mosquitoes and animal hosts and continued research into the dynamics of vector-borne diseases, particularly in unexplored regions.

2.
Pharmaceutics ; 11(9)2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31480682

RESUMO

This research proposes the rational modeling, synthesis and evaluation of film dressing hydrogels based on polyvinyl alcohol crosslinked with 20 different kinds of dicarboxylic acids. These formulations would allow the sustained release of simultaneous bioactive compounds including allantoin, resveratrol, dexpanthenol and caffeic acid as a multi-target therapy in wound healing. Interaction energy calculations and molecular dynamics simulation studies allowed evaluating the intermolecular affinity of the above bioactive compounds by hydrogels crosslinked with the different dicarboxylic acids. According to the computational results, the hydrogels crosslinked with succinic, aspartic, maleic and malic acids were selected as the best candidates to be synthesized and evaluated experimentally. These four crosslinked hydrogels were prepared and characterized by FTIR, mechanical properties, SEM and equilibrium swelling ratio. The sustained release of the bioactive compounds from the film dressing was investigated in vitro and in vivo. The in vitro results indicate a good release profile for all four analyzed bioactive compounds. More importantly, in vivo experiments suggest that prepared formulations could considerably accelerate the healing rate of artificial wounds in rats. The histological studies show that these formulations help to successfully reconstruct and thicken epidermis during 14 days of wound healing. Moreover, the four film dressings developed and exhibited excellent biocompatibility. In conclusion, the novel film dressings based on hydrogels rationally designed with combinatorial and sustained release therapy could have significant promise as dressing materials for skin wound healing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...